

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 8037-8045

Synthesis of 2,5-dihydrobenzo[b]oxepins and 5,6-dihydro-2*H*-benzo[b]oxocines based on [3+3] cyclizations of 1,3-bis(silyl enol ethers)

Van Thi Hong Nguyen,^a Esen Bellur,^a Christine Fischer^{a,b} and Peter Langer^{a,b,*}

^aInstitut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^bLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

> Received 20 February 2007; revised 9 May 2007; accepted 16 May 2007 Available online 21 May 2007

Abstract—Functionalized 2,5-dihydrobenzo[b]oxepins and 5,6-dihydro-2*H*-benzo[b]oxocines were prepared based on a '[3+3] cyclization–olefin-metathesis' strategy.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

2,3,4,5-Tetrahydrobenzo[*b*]oxepins are present in a number of natural products (e.g., heliannuols C and D¹ or plumbagic acid lactone).² 3,4,5,6-Tetrahydro-2*H*-benzo[*b*]oxocines occur in heliannuols A and K,^{1,3} helianane⁴ and protosappanine B.⁵ 2,5-Dihydrobenzo[*b*]oxepins occur in heliannuol B¹ and in radulanins A, H and L.⁶ 5,6-Dihydro-2*H*-benzo-[*b*]oxocines are present in heliannuols G and H,⁴ specionine⁷ and sophoroside A.⁷ Benzene-fused oxygen heterocycles are available by combination of the directed-*ortho*-metallation (DoM) or arenes with ring-closing metathesis (RCM).⁸ A number of benzo[*b*]oxepin and benzo[*b*]oxocine natural products were prepared by RCM.⁹ Recently, we reported¹⁰

Keywords: Cyclizations; Heterocycles; Medium-sized rings; Ring-closing metathesis; Silyl enol ethers.

* Corresponding author. Fax: +49 381 4986412; e-mail: peter.langer@ uni-rostock.de

0040–4020/\$ - see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.05.056

the synthesis of 2,5-dihydrobenzo[b]oxepins and 5,6-dihydro-2H-benzo[b]oxocines based on the combination of formal [3+3] cyclizations¹¹ of 1,3-bis(silyl enol ethers)¹² with RCM. Herein, we report full details of these studies.

2. Results and discussion

The known 1,3-bis(silyl enol ethers) **1a**,**b** are prepared as reported (Scheme 1).^{13,14} The TiCl₄ mediated [3+3]

Scheme 1. Synthesis of **5a,b**: (i) TiCl₄, CH₂Cl₂, $-78 \rightarrow 20$ °C; (ii) H₂C=CH-CH₂Br (1.5 equiv), NaH (2.0 equiv), TBAI (2.0 equiv), THF, 0 °C, 24 h, $0 \rightarrow 20$ °C, 8–12 h; (iii) **6** (5 mol %), CH₂Cl₂ (1.5 equiv), 20 °C, 6–8 h.

 Table 1. Products and yields

1	3–5	п	3 (%) ^a	4 (%) ^a	5 (%) ^a
a	h	1	45	86	99
b	i	2	53	84	75

^a Yields of isolated products.

cyclization of **1a** and **1b** with 1,1,3,3-tetramethoxypropane (**2**) affords salicylates **3a** and **3b**, respectively (Scheme 1, Table 1). Allylation of the hydroxy group affords the allylic ethers **4a** and **4b**. Application of the Mitsunobu reaction for O-allylation was not successful. Compounds **4a** and **4b** are transformed into the desired 2,5-dihydrobenzo[*b*]oxcein **5a** and 5,6-dihydro-2*H*-benzo[*b*]oxocine **5b** by RCM using Grubbs' I catalyst (**6**).^{15,16} Migration of the olefin functionality during RCM (to form cyclic enol ethers) is *not* observed.¹⁷

The known silyl enol ethers **7a–d** are prepared from pentane-2,4-dione, 3-methylpentane-2,4-dione, heptane-3,5-dione and 2-acetyltetralone.^{13,14} The TiCl₄ mediated [3+3] cyclization of 1,3-bis(silyl enol ethers) **1a,b** with **7a–d** affords the salicylates **8a–g** (Scheme 2, Table 2). Derivatives **8d** and **8g** are formed with very good regioselectivity. The cyclization proceeds by TiCl₄ mediated isomerization of **7** by shift of the silyl group (intermediate **A**), TiCl₄ mediated attack of carbon atom C-4 of **1a,b** onto the carbon located next to substituent R¹ to give intermediate **B** (conjugate addition), cyclization (intermediate **C**), and subsequent aromatization.^{11,13} The yields of **8a–g** are similar to those reported for related [3+3] cyclizations¹¹ and are not decreased by the presence of the additional alkenyl moiety in the 1,3-bis-(silyl enol ether).

Scheme 2. Synthesis of 8a–g: (i) TiCl₄ (1.0 equiv), CH₂Cl₂, $-78 \rightarrow 20$ °C.

Table 2. Products and yields

1	7	8–10	п	\mathbf{R}^1	\mathbb{R}^2	R ³	8 (%) ^a	9 (%) ^a	10 (%) ^a
a	a	а	1	Me	Н	Me	44	85	90
a	b	b	1	Me	Me	Me	52	95	93
a	с	с	1	Et	Н	Et	31	78	91
a	d	d	1	Me	(CH	$_{2}C_{6}H_{4}$	43	77	80
b	b	e	2	Me	Me	Me	47	76	76
b	с	f	2	Et	Н	Et	50	82	91
b	d	g	2	Me	(CH ₂	$_{2})_{2}C_{6}H_{4}$	33	96	70

^a Yields of isolated products.

The sodium hydride mediated reaction of 8a-g with allyl bromide and homoallyl bromide affords the arylethers 9a-g, which are transformed into the desired 2,5-dihydrobenzo-[*b*]oxepins **10a–d** and 5,6-dihydro-2*H*-benzo[*b*]oxocines **10e–g** by RCM using Grubbs' I catalyst (6) (Scheme 3, Table 2).^{15,16} Migration of the olefin functionality during RCM (to form cyclic enol ethers) is again not observed.¹⁷

Scheme 3. Synthesis of 10a–g: (i) H₂C=CHCH₂Br or H₂C=CH(CH₂)₂Br (1.5 equiv), NaH (2.0 equiv), TBAI (2.0 equiv), THF, $0 \rightarrow 20$ °C, 8–12 h; (ii) 6 (5 mol %), CH₂Cl₂ (1.5 equiv), 20 °C, 6–8 h.

In summary, we reported the synthesis of functionalized 2,5dihydrobenzo[*b*]oxepins and 5,6-dihydro-2*H*-benzo[*b*]oxocines by combination of formal [3+3] cyclizations with the ring-closing metathesis.

3. Experimental section

3.1. General

Bruker TO 250 (250 MHz), Bruker ARX 300 (300 MHz) or Varian Inova 500 (500 MHz); δ =0.00 ppm for tetramethylsilane, $\delta = 2.04$ ppm for acetone- d_6 , $\delta = 7.26$ ppm for deuterochloroform (CDCl₃). Characterization of the signal fragmentations: s=singlet, d=doublet, dd=doublet of doublet, ddd=doublet of a double doublet, t=triplet, q=quartet, quint=quintet, sixt=sextet, sept=septet, m=multiplet, br=broadly. Spectra were evaluated according to first order rule. Equipment: Bruker AM 250 (62.9 MHz), Bruker ARX 300 (75 MHz) or Bruker Advance 600 (150 MHz); $\delta = 128.00 \text{ ppm}$ for acetone- d_6 , $\delta = 77.00 \text{ ppm}$ for CDCl₃. The multiplicity of the carbon atoms was determined by the DEPT 135 and APT (APT=Attached Proton Test) techniques and quoted as CH₃, CH₂, CH and C for primary, secondary, tertiary and quaternary carbon atoms. Characterization of the signal fragmentations: quart=quartet, the multiplicity of the signals was determined by the DEPT recording technology and/or the APT recording technology. Mass spectroscopy: APPM MS40, Varian MAT CH 7, MAT 731, Finnigan MAT 95 spectrometer (EI, 70 eV), Finnigan LC-Q (ESI). High-resolution mass spectroscopy: Finnigan MAT 95 or Varian MAT 311, Bruker FT CIR. Infrared spectroscopy (IR): Bruker IFS 66 (FTIR), Nicolet 205 FTIR; KBr and/or KAP; abbreviations for signal allocations: w=weak, m=middle, s=strong, br=broad. UV-vis spectroscopy: Perkin-Elmer UV-vis/NIR Lambda 19. as solvent CH₃CN was used. Elementary analyses: Microanalytical laboratory of the University of Greifswald (Leco CHN CHNS-932). Melting points: Microheating table HMK 67/1825 Kuestner (Büchi apparatus). Melting points are uncorrected. Column chromatography: chromatographic separation took place at Merck silica gel 60 (0.063-0.200 mm, 70-230 mesh) as normal and/or at Macherey silica gel 60 (0.040-0.063 mm, 200-400 mesh) as flash chromatography. TLC: Merck DC finished foils, silica gel 60 F₂₅₄ on aluminium foil and Macherey finished foils Alugram[®] Sil G/UV₂₅₄. Detection under UV light with 254 nm and/or 366 nm without dipping reagent, as well as with anisic aldehyde sulfuric acid dip reagent (1 mL of anisic aldehyde dissolved in 100 mL of a stock solution of 85% methanol, 14% acetic acid and 1% sulfuric acid).

3.2. General procedure for the synthesis of 3a,b and 8a-g

To a CH₂Cl₂ solution of **1a,b** and **7a–d** or 1,1,3,3-tetramethoxypropane (**2**) was dropwise added TiCl₄ at -78 °C under argon atmosphere. The solution was stirred at -78 °C for 30 min and was subsequently allowed to warm to 20 °C within 18 h. To the solution was added a saturated aqueous solution of NaHCO₃. The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (4×100 mL). The combined organic layers were dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, *n*-hexane/EtOAc).

3.2.1. Ethyl 3-allyl-2-hydroxybenzoate (3a). Starting with 1a (1.570 g, 5.0 mmol), TiCl₄ (0.945 g, 5.0 mmol), 1,1,3,3tetramethoxypropane (0.821 g, 5.0 mmol) and CH₂Cl₂ (10 mL), **3a** was isolated by column chromatography (nhexane/EtOAc=20:1) as a colourless oil (0.464 g, 45%). ¹H NMR (CDCl₃, 300 MHz): δ =1.41 (t, J=7.2 Hz, 3H, OCH₂CH₃), 3.44 (d, J=6.6 Hz, 2H, CH₂=CHCH₂), 4.42 (q, J=7.1 Hz, 2H, OCH₂CH₃), 5.05–5.12 (m, 2H, CH2=CHCH2), 5.95-6.08 (m, 1H, CH2=CHCH2), 6.82 (t, J=7.8 Hz, 1H, Ar), 7.31 (dd, J=6.0, 1.5 Hz, 1H, Ar), 7.75 (dd, J=6.3, 1.7 Hz, 1H, Ar), 11.14 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2 (CH₃), 33.6, 61.4 (CH₂), 112.2 (C), 115.8 (CH₂), 118.6, 127.9 (CH), 128.5 (C), 135.6, 136.2 (CH), 159.6, 170.6 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3139 (m, br), 2983 (m), 1672 (s), 1614 (m), 1449 (s), 1303 (s), 1248 (s), 1150 (s), 1025 (s), 760 (s). UV-vis (CH₃CN, nm): λ_{max} (log ε)=209.3 (4.47), 242.4 (3.92), 309.7 (3.63). MS (EI, 70 eV): m/z (%)=206 (M⁺, 38), 160 (43), 132 (100), 103 (34), 77 (41), 51 (16). Anal. Calcd for C₁₂H₁₄O₃: C 69.88, H 6.79; found: C 69.31, H 7.04.

3.2.2. Ethyl 3-(but-3-enyl)-2-hydroxybenzoate (3b). Starting with **1b** (3.286 g, 10 mmol), TiCl₄ (1.89 g, 10 mmol),

1,1,3,3-tetramethoxypropane (1.642 g, 10 mmol) and CH₂Cl₂ (25 mL), 3b was isolated by column chromatography (nhexane/EtOAc=20:1) as a colourless oil (1.177 g, 53%). ¹H NMR (CDCl₃, 300 MHz): δ =1.41 (t, J=7.2 Hz, 3H, OCH₂CH₃), 2.38 (q, J=7.8 Hz, 2H, CH₂CH₂CH=CH₂), 2.75 (t, J=7.8 Hz, 2H, $CH_2CH_2CH=CH_2$), 4.43 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.95–5.07 (m, 2H, CH₂= CHCH₂), 5.81–5.94 (m, 1H, CH₂=CHCH₂), 6.80 (t, J=7.8 Hz, 1H, Ar), 7.31 (dd, J=7.3, 1.2 Hz, 1H, Ar), 7.72 (dd, J=7.8, 1.8 Hz, 1H, Ar), 11.1 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2 (CH₃), 26.2, 33.5, 61.4 (CH₂), 112.1 (C), 114.5 (CH₂), 119.2 (CH), 127.1 (C), 128.2, 134.4, 138.6 (CH), 159.2, 171.2 (C), IR (KBr, cm⁻¹): $\tilde{\nu}$ =3100 (m, br), 2981 (m), 2937 (m), 1669 (s), 1612 (m), 1448 (m), 1400 (m), 1375 (m), 1316 (s), 1256 (s), 1194 (s), 1125 (m), 1027 (m), 913 (m), 763 (m). MS (EI, 70 eV): m/z (%)=220 (M⁺, 12), 179 (33), 134 (100), 106 (34), 91 (19), 77 (25). HRMS (EI, 70 eV) calcd for $C_{13}H_{16}O_3$ ([M⁺]): m/z=220.10994, found: m/z=220.10953.

3.2.3. Ethyl 3-allyl-2-hydroxy-4,6-dimethylbenzoate (8a). Starting with 1a (1.257 g, 4.0 mmol), TiCl₄ (0.760 g, 4.0 mmol) in 10 mL of CH_2Cl_2 and **7a** (0.680 g, 4.0 mmol), 8a was isolated by column chromatography (nhexane/EtOAc=20:1) as a colourless oil (0.338 g, 44%). ¹H NMR (CDCl₃, 300 MHz): δ =1.42 (t, J=7.2 Hz, 3H, OCH₂CH₃), 2.25 (s, 3H, CH₃), 2.49 (s, 3H, CH₃), 3.43 (m, J=1.5 Hz, 2H, CH₂=CHCH₂), 4.42 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.89–4.99 (m, J=15.5, 10.4, 1.7 Hz, 2H, CH_2 =CHCH₂), 5.93 (m, J=5.2, 1.5 Hz, 1H, CH₂= CHCH₂), 6.55 (s, 1H, CH, Ar), 11.75 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=14.2, 19.6, 23.9 (CH₃), 30.1, 61.4 (CH₂), 109.8 (C), 114.4 (CH₂), 123.8 (C), 124.7, 135.7 (CH), 138.5, 143.6, 160.8, 172.2 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2979 (m), 2934 (m), 1654 (s), 1616 (m), 1449 (m), 1396 (s), 1268 (s), 1173 (s), 1031 (m), 847 (m). UVvis (CH₃CN, nm): λ_{max} (log ε)=216.7 (4.41), 253.2 (3.98), 315.6 (3.57). MS (EI, 70 eV): m/z (%)=234 (M⁺, 29), 188 (34), 173 (24), 160 (53), 145 (27), 114 (9), 91 (11), 28 (100). HRMS (EI, 70 eV) calcd for $C_{14}H_{18}O_3$: m/z =234.1256 ([M⁺]), found: *m*/*z*=234.1256±2 ppm.

3.2.4. Ethyl 3-allyl-2-hydroxy-4,5,6-trimethylbenzoate (8b). Starting with 1a (1.257 g, 4.0 mmol) and 7b (0.745 g, 4.0 mmol) in 10 mL of CH_2Cl_2 and $TiCl_4$ (0.760 g, 4.0 mmol), **8b** was isolated by column chromatography (*n*hexane/EtOAc=30:1) as a colourless oil (0.520 g, 52%). ¹H NMR (CDCl₃, 300 MHz): δ =1.41 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.17 (s, 3H, CH₃), 2.23 (s, 3H, CH₃), 2.44 (s, 3H, CH₃), 3.50 (m, J=1.18 Hz, 2H, CH₂=CHCH₂), 4.43 $(q, J=7.1 \text{ Hz}, 2\text{H}, \text{ OCH}_2\text{CH}_3), 4.95 (m, J=15.5, 11.5, 11.5)$ 1.8 Hz, 2H, CH₂=CHCH₂), 5.98 (m, J=5.5, 1.3 Hz, 1H, CH₂=CHCH₂), 11.51 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2, 16.1, 16.9, 19.2 (CH₃), 30.5, 61.4 (CH₂), 111.6 (C), 114.4 (CH₂), 123.4, 127.2 (C), 135.6, 136.1 (CH), 142.3, 156.9, 172.0 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2981 (m), 2931 (m), 1654 (s), 1600 (m), 1456 (s), 1403 (s), 1374 (s), 1312 (s), 1260 (s), 1196 (s), 1045 (m), 1019 (m), 910 (m), 806 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)= 217.1 (4.38), 256.1 (3.94), 320.9 (3.57). MS (EI, 70 eV): m/z (%)=248 (M⁺, 58), 202 (55), 187 (40), 174 (100), 159 (65), 91 (18), 28 (12). HRMS (ESI⁺) calcd for C₁₅H₂₀O₃ [M⁺+1]:

m/z=249.14907; found: m/z=249.14867. Anal. Calcd for C₁₅H₂₀O₃: C 72.55, H 8.18; found: C 72.13, H 7.67.

3.2.5. Ethyl 3-allyl-4,6-diethyl-2-hydroxybenzoate (8c). Starting with **1a** (1.257 g, 4.0 mmol), **7c** (0.800 g, 4.0 mmol) in 10 mL of CH_2Cl_2 and $TiCl_4$ (0.760 g, 4.0 mmol), 8c was isolated by column chromatography (n-hexane/ EtOAc=50:1) as a colourless oil (0.320 g, 31%). ¹H NMR $(CDCl_3, 300 \text{ MHz}): \delta = 1.17 \text{ (t, } J = 7.4 \text{ Hz}, 6\text{H}, 2CH_3CH_2),$ 1.42 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.60 (q, J=7.5 Hz, 2H, CH_3CH_2), 2.92 (q, J=7.4 Hz, 2H, CH_3CH_2), 3.44 (m, J=2.4, 1.7 Hz, 2H, CH₂=CHCH₂), 4.43 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.99 (m, J=10.0, 1.7 Hz, 2H, CH₂= CHCH₂), 5.97 (m, J=1.3 Hz, 1H, CH₂=CHCH₂), 6.59 (s, 1H, CH, Ar), 11.66 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ=14.2, 15.1, 16.3 (CH₃), 26.1, 29.7, 29.8, 61.1 (CH₂), 109.1 (C), 114.4 (CH₂), 121.8 (CH), 123.2 (C), 136.5 (CH), 145.0, 149.4, 160.8, 172.0 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3078 (w), 2974 (m), 2879 (w), 1978 (w), 1654 (s), 1614 (m), 1401 (s), 1317 (m), 1266 (s), 1167 (m), 1019 (w), 909 (w), 865 (w). UV-vis (CH₃CN, nm): λ_{max} $(\log \varepsilon) = 217.0$ (4.44), 254.4 (4.02), 315.9 (3.63). MS (EI, 70 eV): m/z (%)=263 (M⁺+1, 6), 262 (M⁺, 52), 216 (100), 201 (51), 173 (99), 159 (67), 73 (36), 28 (94).

3.2.6. Ethyl 2-allyl-9.10-dihydro-3-hydroxy-1-methylphenanthrene-4-carboxylate (8d). Starting with 1a (1.89 g, 6.0 mmol), 7d (1.56 g, 6.0 mmol) in 15 mL of CH₂Cl₂ and TiCl₄ (1.14 g, 6.0 mmol), 8d was isolated by column chromatography (n-hexane/EtOAc=30:1) as a colourless oil (0.820 g, 43%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.00$ (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.28 (s, 3H, CH₃), 2.65 (m, J=5.5, 1.2 Hz, 2H, CH₂), 2.81 (m, J=6.8 Hz, 2H, CH₂), 3.55 (m, J=2.5, 1.8 Hz, 2H, CH₂=CHCH₂), 4.16 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.96–5.04 (m, J=6.0, 1.8 Hz, 2H, CH_2 =CHCH₂), 5.96 (m, J=5.8, 1.4 Hz, 1H, CH2=CHCH2), 7.09-7.24 (m, 4H, Ar), 9.95 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =13.4, 15.9 (CH₃), 25.7, 29.2, 30.7, 61.2 (CH₂), 109.1 (C), 114.8 (CH₂), 123.8, 125.2 (C), 125.3 (CH), 126.8 (C), 126.9, 129.2 (CH), 130.5, 134.7, 135.6 (C), 135.7 (CH), 140.2, 156.3, 172.1 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3217 (br, w), 3072 (m), 2980 (m), 2899 (m), 1661 (s), 1597 (m), 1442 (s), 1401 (s), 1375 (s), 1315 (s), 1255 (s), 1191 (s), 1123 (m), 1054 (m), 1018 (m), 911 (m), 785 (s). UV-vis (CH₃CN, nm): λ_{max} (log ε)=203.9 (4.49), 231.9 (4.39), 279.9 (3.94), 340.9 (3.89). MS (EI, 70 eV): m/z (%)=322 (M⁺, 2), 276 (3), 248 (5), 105 (8), 78 (8), 74 (29), 32 (23), 28 (100). HRMS (ESI⁺) calcd for $C_{21}H_{22}O_3$ [M⁺+1]: m/z=323.16472; found: 323.16442. Anal. Calcd for C₁₅H₂₀O₃: C 78.23, H 6.88; found: C 78.42, H 7.60.

3.2.7. Ethyl 3-(but-3-enyl)-2-hydroxy-4,5,6-trimethylbenzoate (8e). Starting with **1b** (1.97 g, 6.0 mmol) and **7b** (1.12 g, 6.0 mmol) in 15 mL of CH₂Cl₂ and TiCl₄ (1.14 g, 6.0 mmol), **8e** was isolated by column chromatography (*n*-hexane/EtOAc=30:1) as a colourless oil (0.735 g, 47%). ¹H NMR (CDCl₃, 300 MHz): δ =1.41 (t, *J*=7.1 Hz, 3H, OCH₂CH₃), 2.16 (s, 3H, CH₃), 2.19–2.26 (m, 2H, CH₂=CHCH₂CH₂), 2.27 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 2.80 (m, *J*=6.9, 2.1 Hz, 2H, CH₂=CHCH₂CH₂), 4.43 (q, *J*=7.1 Hz, 2H, OCH₂CH₃), 4.95–5.10 (m, *J*=9.5, 17.1, 1.6 Hz, 2H, CH₂=CHCH₂CH₂), 5.92 (m, *J*=5.2 Hz, 1H, CH₂=CHCH₂), 10.74 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2, 16.1, 16.9, 19.2 (CH₃), 26.2, 33.3, 61.4 (CH₂), 111.2 (C), 114.3 (CH₂), 125.8, 127.1, 135.1 (C), 138.8 (CH), 141.6, 157.0, 172.1 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3075 (m), 2979 (s), 2932 (s), 1651 (s), 1599 (s), 1446 (s), 1403 (s), 1374 (s), 1312 (s), 1254 (s), 1196 (s), 1117 (m), 1045 (s), 1023 (m), 911 (m), 806 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)=217.2 (4.37), 256.6 (3.92), 321.4 (3.54). MS (EI, 70 eV): *m/z* (%)=262 (M⁺, 16), 221 (24), 175 (100), 146 (8), 91 (15), 79 (16), 28 (30). HRMS (ESI⁺) calcd for C₁₆H₂₂O₃ [M⁺+1]: *m/z*=263.16472; found: *m/z*=263.16413.

3.2.8. Ethyl 3-(but-3-enyl)-4,6-diethyl-2-hydroxybenzoate (8f). Starting with 1b (0.985 g, 3.0 mmol) and 7c (0.600 g, 3.0 mmol) in 8 mL of CH₂Cl₂ and TiCl₄ (0.569 g, 3.0 mmol), 8f was isolated by column chromatography (n-hexane/EtOAc=50:1) as a colourless oil (0.415 g, 50%). ¹H NMR (CDCl₃, 300 MHz): δ =1.20 (t, J=7.4 Hz, 6H, 2CH₃CH₂), 1.42 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.28 (m, 2H, CH₂=CHCH₂CH₂), 2.60 (q, J=7.5 Hz, 2H, CH₃CH₂), 2.73 (m, J=6.5, 1.5 Hz, 2H, $CH_2 = CHCH_2CH_2$), 2.91 (q, J = 7.4 Hz, 2H, CH_3CH_2), 4.43 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.95–5.09 (m, J=10.1, 15.4, 1.2 Hz, 2H, CH_2 =CHCH₂CH₂), 5.92 (m, J=6.5, 3.4 Hz, 1H, CH₂=CHCH₂CH₂), 6.57 (s, 1H, CH, Ar), 11.65 (s, 1H, OH). ¹³C NMR: δ =14.0, 15.2, 16.3 (CH₃), 25.4, 26.3, 29.7, 33.5, 61.3 (CH₂), 109.0 (C), 114.3 (CH₂), 121.8 (CH), 125.6 (C), 138.9 (CH), 144.4, 148.9, 161.0, 172.0 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3077 (w), 2973 (s), 2936 (m), 1652 (s), 1614 (m), 1454 (w), 1399 (s), 1376 (m), 1318 (m), 1260 (s), 1171 (m), 1022 (w), 847 (w), UV-vis (CH₃CN, nm): λ_{max} (log ε)=217.1 (4.46), 254.9 (4.02), 316.4 (3.61). MS (EI, 70 eV): m/z (%)=277 (M⁺+1, 6), 276 (M⁺, 7), 235 (23), 189 (100), 91 (6), 79 (6), 32 (20), 28 (89). HRMS (ESI⁺) calcd for $C_{17}H_{24}O_3$ [M⁺+1]: m/z=277.18037; found: m/z=277.18001. Anal. Calcd for C₁₇H₂₄O₃: C 73.88, H 8.75; found C 73.35, H 8.58.

3.2.9. Ethyl 2-(but-3-enyl)-9,10-dihydro-3-hydroxy-1methylphenanthrene-4-carboxylate (8g). Starting with 1b (2.63 g, 8.0 mmol) and 7d (2.08 g, 8.0 mmol) in 20 mL of CH₂Cl₂ and TiCl₄ (1.52 g, 8.0 mmol), 8g was isolated by column chromatography (n-hexane/EtOAc=30:1) as a colourless solid (0.874 g, 33%). ¹H NMR (CDCl₃, 300 MHz): δ=1.02 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.27 (m, J=2.5 Hz, 2H, CH₂=CHCH₂CH₂), 2.29 (s, 3H, CH₃), 2.65 (m, J=5.7 Hz, 2H, CH₂), 2.81 (m, J=5.3 Hz, 2H, CH₂), 2.86 (m, J=2.5 Hz, 2H, CH₂=CHCH₂), 4.16 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.98–5.12 (m, J=10.2, 15.1, 1.8 Hz, 2H, CH_2 =CHCH₂CH₂), 5.95 (m, 1H, CH₂= CHCH₂CH₂), 7.09 (m, 1H, Ar), 7.14–7.25 (m, 3H, Ar), 9.93 (s, 1H, OH). ¹³C NMR (CDCl₃, 75 MHz): δ =13.4, 16.0 (CH₃), 25.7, 26.3, 29.2, 33.2, 61.2 (CH₂), 108.9 (C), 114.5 (CH₂), 125.3, 126.8, 126.9 (CH), 127.7 (C), 129.2 (CH), 130.5, 134.3, 134.7, 137.6 (C), 138.6 (CH), 139.6, 156.5, 172.2 (C). ¹H NMR (CDCl₃, 500.13 MHz) δ: 9.93 (s, 1H, OH), 7.24 (dd, ${}^{3}J_{10,11}$ =7.3 Hz, ${}^{4}J_{10,12}$ =1.6 Hz, 1H, H-10), 7.20–7.13 (m, 2H, H-11,12), 7.08 (dd, ${}^{3}J_{12,13}$ = 7.3 Hz, ${}^{4}J_{11,13}$ =1.6 Hz, 1H, H-13), 5.96 (m, 1H, H-17), 5.10 (dq, ${}^{3}J_{17,18a}$ =17.0 Hz, 1H, H-18a), 5.00 (dq, ${}^{3}J_{17,18b}$ = 10.0 Hz, 1H, H-18b), 4.17 (q, 2H, CH₂CH₃), 2.86 (m, 2H, H-15), 2.81 (m, 2H, H-8), 2.64 (m, 2H, H-7), 2.30 (s, 3H,

Me), 2.29 (m, 2H, H-16), 1.00 (t, 3H, ${}^{3}J_{CH_{2},CH_{3}} = 7.3$ Hz, CH₂CH₃). 13 C NMR (CDCl₃, 125.8 MHz) δ : 172.2 (CO), 156.5 (C-3), 139.6 (C-5), 138.6 (C-17), 137.6 (C-9), 134.8 (C-14), 134.3 (C-1), 130.5 (C-6), 129.2 (C-13), 127.7 (C-4), 126.9, 126.8 (C-10,11), 125.3 (C-12), 114.5 (C-18), 109.0 (C-2), 61.2 (CH₂CH₃), 33.2 (C-16), 29.2 (C-8), 26.3 (C-15), 25.7 (C-7), 16.0 (Me), 13.4 (CH₂CH₃). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3429 (br, m), 2981 (m), 2898 (m), 1660 (s), 1443 (m), 1398 (m), 1373 (m), 1315 (s), 1251 (s), 1197 (s), 1026 (m), 910 (w), 762 (m). UV–vis (CH₃CN, nm): λ_{max} (log ε)=203.1 (4.53), 231.8 (4.39), 280.2 (3.94), 341.2 (3.89). MS (EI, 70 eV): m/z (%)=336 (M⁺, 8), 275 (5), 249 (24), 114 (9), 79 (8), 74 (18), 32 (24), 28 (100). HRMS (ESI⁺) calcd for C₂₂H₂₄O₃ [M⁺+1]: m/z= 337.18037; found: m/z=337.18044.

3.3. General procedure for the synthesis of salicylates 4a,b and 9a–g

To a mixture of NaH and of n-Bu₄NI was simultaneously added a THF solution of **3a**,**b** or **8a**–**g** and of allyl bromide or homoallyl bromide at 0 °C under argon atmosphere. The pale yellow coloured solution was stirred at 0 °C and was allowed to warm to 20 °C within 8–12 h. The solvent was removed in vacuo and the residue was purified by column chromatography (silica gel, *n*-hexane/EtOAc=20:1).

3.3.1. Ethyl 3-allyl-2-(allyloxy)benzoate (4a). Starting with **3a** (0.300 g, 1.46 mmol) in 20 mL of THF, NaH (0.077 g, 3.2 mmol), n-Bu₄NI (1.182 g, 3.2 mmol) and allyl bromide (0.440 g, 3.2 mmol), **4a** was isolated as a yellow oil (0.308 g, 86%). ¹H NMR (CDCl₃, 300 MHz): δ =1.39 (t, J=7.2 Hz, 3H, OCH₂CH₃), 3.46 (d, J=6.6 Hz, 2H, CH₂=CHCH₂), 4.37 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.42-4.46 (m, 2H, CH₂=CHCH₂O), 4.81 (dt, J=5.7, 1.4 Hz, 1H, CH₂=CHCH₂Ar), 5.03–5.10 (m, 1H, CH₂= CHCH₂Ar), 5.27 (tquint, J=10.5, 1.4 Hz, 1H, $CH_2=$ CHCH₂O), 5.35–5.45 (m, 1H, CH₂=CHCH₂O), 5.90–6.15 (m, 2H, $2 \times CH_2 = CH$), 7.11 (dt, J = 7.8, 1.5 Hz, 1H, Ar), 7.34-7.39 (ddd, J=7.5, 3.6, 1.8 Hz, 1H, Ar), 7.66-7.72 (ddd, J=7.5, 7.5, 1.8 Hz, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ=14.3 (CH₃), 33.8, 65.8, 75.6, 116.3, 117.4 (CH₂), 118.6 (C), 123.7 (CH), 125.4 (C), 129.7, 133.8, 134.5, 136.8 (CH), 157.1, 166.1 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2927 (m), 1724 (s), 1645 (w), 1452 (m), 1417 (m), 1290 (m), 1258 (s), 1219 (w), 1136 (s), 1099 (w), 992 (m), 922 (w). MS (EI, 70 eV): m/z (%)=246 (M⁺, 1), 204 (64), 191 (22), 179 (41), 159 (91), 145 (30), 131 (100), 115 (31), 103 (58), 91 (22), 77 (44). HRMS (EI, 70 eV) calcd for $C_{15}H_{18}O_3$ ([M⁺]): m/z=246.1250; found: m/z=246.1241.

3.3.2. Ethyl 2-(allyloxy)-3-(but-3-enyl)benzoate (4b). Starting with **3b** (0.500 g, 2.27 mmol) in 30 mL of THF, NaH (0.120 g, 5.0 mmol), *n*-Bu₄NI (1.847 g, 5.0 mmol) and allyl bromide (0.605 g, 5.0 mmol), **4b** was isolated as a yellow oil (0.496 g, 84%). ¹H NMR (CDCl₃, 300 MHz): δ =1.38 (t, *J*=7.2 Hz, 3H, OCH₂CH₃), 2.25 (m, 2H, CH₂CH₂CH=CH₂), 2.72 (m, 2H, CH₂CH₂CH=CH₂), 4.37 (q, *J*=7.2 Hz, 2H, OCH₂CH₃), 4.44 (m, 2H, CH₂=CHCH₂O), 4.95–5.10 (m, 2H, CH₂=CHCH₂CH₂CH₂), 5.25–5.45 (m, 2H, CH₂=CHCH₂O), 5.80–6.12 (m, 2H, CH₂=CHCH₂CH₂, CH₂=CHCH₂O), 7.08 (dt, *J*=7.8, 1.5 Hz, 1H, Ar), 7.32–7.38 (ddd, J=7.5, 3.6, 1.8 Hz, 1H, Ar), 7.64–7.71 (ddd, J=7.5, 7.5, 1.8 Hz, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): $\delta=14.2$ (CH₃), 26.4, 34.5, 61.2, 75.8, 114.6, 116.7 (CH₂), 117.5 (C), 122.9 (CH), 125.2 (C), 128.9, 133.9, 134.6, 138.4 (CH), 155.7, 167.2 (C). IR (KBr, cm⁻¹): $\tilde{\nu}=2928$ (m), 1725 (s), 1644 (m), 1556 (w), 1456 (m), 1415 (m), 1288 (m), 1257 (s), 1145 (m), 1099 (w), 991 (m), 919 (m). MS (EI, 70 eV): m/z (%)=260 (M⁺, 32), 219 (65), 203 (5), 174 (100), 148 (10), 103 (17), 87 (25), 76 (55). HRMS (EI, 70 eV) calcd for C₁₆H₂₀O₃ ([M⁺]): m/z=260.14124; found: m/z=260.14095.

3.3.3. Ethyl 3-allyl-2-(allyloxy)-4.6-dimethylbenzoate (9a). Starting with 8a (0.285 g, 1.22 mmol, 1.0 equiv) in 15 mL of THF, NaH (0.059 g, 2.44 mmol, 2.0 equiv), *n*-Bu₄NI (0.797 g, 2.44 mmol, 2.0 equiv) and allyl bromide (0.220 g, 1.83 mmol, 1.5 equiv), 9a was isolated as a colourless oil (0.285 g, 85%). ¹H NMR (CDCl₃, 300 MHz): δ=1.37 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.24 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 3.42 (m, *J*=1.8 Hz, 2HCH₂=CHCH₂Ar), 4.37 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.39 (m, J=1.5 Hz, 2H, CH₂=CHCH₂O), 4.86-4.93 (m, J=15.3, 10.2, 1.8 Hz, 2H, CH₂=CHCH₂Ar), 5.34–5.41 (m, J=10.4, 15.5, 1.6 Hz, 2H, CH₂=CHCH₂O), 5.88-5.93 (m, J=5.4 Hz, 1H, CH₂=CHCH₂), 5.99-6.03 (s. J=5.3 Hz, 1H, CH₂=CHCH₂O), 6.80 (s, 2H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =14.3, 19.0, 19.4 (CH₃), 30.5, 61.1, 76.0, 115.2, 116.8 (CH₂), 126.8 (C), 127.8 (CH), 128.9 (C), 133.9 (CH), 134.0 (C), 136.1 (CH), 140.1, 154.4, 168.6 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3081 (m), 2981 (s), 2928 (s), 2870 (m), 1726 (s), 1642 (m), 1609 (m), 1666 (m), 1453 (s), 1411 (s), 1297 (s), 1270 (s), 1150 (s), 1108 (s), 1067 (s), 1041 (s), 992 (s), 918 (s), 864 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)=202.9 (4.59), 276.4 (3.89). MS (EI, 70 eV): m/z (%)=275.5 (M⁺+1, 11), 274.5 (M⁺, 62), 233 (24), 232 (26), 229 (36), 228 (17), 201 (12), 188 (19), 187 (100), 173 (20), 161 (34), 160 (36), 159 (31), 145 (18), 91 (16), 41 (20), 29 (11). Anal. Calcd for C₁₇H₂₂O₃: C 74.42, H 8.08; found: C 74.41, H 7.91.

3.3.4. Ethyl 3-allyl-2-(allyloxy)-4,5,6-trimethylbenzoate (9b). Starting with 8b (0.179 g, 0.72 mmol, 1.0 equiv) in 10 mL of THF, NaH (0.035 g, 1.44 mmol, 2.0 equiv), *n*-Bu₄NI (0.471 g, 1.44 mmol, 2.0 equiv) and allyl bromide (0.130 g, 1.08 mmol, 1.5 equiv), 9b was isolated as a colourless oil (0.195 g, 94%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.37$ (t, J = 7.1 Hz, 3H, OCH₂CH₃), 2.16 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 2.19 (s, 3H, CH₃), 3.46 (m, J=1.9 Hz, 2H, CH_2 =CHC H_2Ar), 4.33 (m, J=1.4 Hz, 2H, CH_2 = CHCH₂O), 4.36 (q, J=7.0 Hz, 2H, OCH₂CH₃), 4.85–5.04 (m, J=15.4, 10.3, 1.8 Hz, 2H, $CH_2=CHCH_2Ar$), 5.18– 5.39 (m, J=10.5, 15.5, 1.6 Hz, 2H, $CH_2=CHCH_2O$), 5.95–5.98 (m, 1H, CH₂=CHCH₂Ar), 5.99–6.04 (m, 1H, CH₂=CHCH₂O). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2, 15.9, 16.4, 17.3 (CH₃), 30.8, 61.2, 76.1, 115.2, 116.7 (CH₂), 127.6, 128.8, 131.6, 131.8 (C), 133.9, 136.5 (CH), 138.4, 151.6, 169.3 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2982 (m), 2931 (m), 1728 (s), 1445 (m), 1418 (m), 1273 (s), 1189 (s), 1045 (s), 917 (m). UV-vis (CH₃CN, nm): λ_{max} $(\log \varepsilon) = 202.9$ (4.58), 279.4 (2.96). MS (EI, 70 eV): m/z $(\%)=289 (M^++1, 10), 288 (M^+, 59), 247 (27), 201 (100),$ 174 (34), 159 (23), 91 (19), 41 (23), 28 (4). Anal. Calcd for C₁₈H₂₄O₃: C 74.96, H 8.39; found: C 74.34, H 8.50.

3.3.5. Ethyl 3-allyl-2-(allyloxy)-4,6-diethylbenzoate (9c). Starting with 8c (0.200 g, 0.76 mmol, 1.0 equiv) in 10 mL THF, NaH (0.036 g, 1.52 mmol, 2.0 equiv), n-Bu₄NI (0.497 g, 1.52 mmol, 2.0 equiv) and allyl bromide (0.137 g, 1.14 mmol, 1.5 equiv), 9c was isolated as a colourless oil (0.180 g, 78%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.20$ (t, J = 7.5 Hz, 6H, 2CH₃CH₂), 1.36 (t, J = 7.2 Hz, 3H, OCH₂CH₃), 2.56–2.64 (q, J=7.5 Hz, 4H, 2CH₃CH₂), 3.43 (m, J=1.8 Hz, 2H, CH₂=CHCH₂Ar), 4.34 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.39 (m, 2H, CH₂=CHCH₂O), 4.87–4.99 (m, J=11.6, 8.7, 1.8 Hz, 2H, CH₂=CHCH₂Ar), 5.18–5.41 (m, J=8.9, 15.5, 1.5 Hz, 2H, CH₂=CHCH₂O), 5.89–6.06 (m, 2H, CH₂=CHCH₂Ar, CH₂=CHCH₂O), 6.86 (s, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2, 15.1, 15.5 (CH₃), 25.5, 26.4, 29.9, 61.1, 75.9, 115.1, 116.6 (CH₂), 124.4 (CH), 126.3, 128.3 (C), 133.9, 136.9 (CH), 140.3, 146.0, 154.2, 168.8 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2972 (m), 2934 (w), 1728 (s), 1641 (w), 1459 (w), 1414 (w), 1277 (m), 1149 (m), 1027 (w), 918 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=203.4 (4.57). MS (EI, 70 eV): m/z(%)=302 (M⁺, 12), 261 (18), 215 (44), 173 (11), 41 (15), 32 (21), 28 (100). HRMS (EI, 70 eV) calcd for C₁₉H₂₆O₃: *m*/*z*=302.18819; found: *m*/*z*=302.18775.

3.3.6. Ethyl 2-allyl-3-(allyloxy)-9,10-dihydro-1-methylphenanthrene-4-carboxylate (9d). Starting with 8d (0.322 g, 1.00 mmol, 1.0 equiv) in 15 mL of THF, NaH 2.0 mmol, 2.0 equiv), n-Bu₄NI (0.048 g. (0.653 g, 2.00 mmol, 2.0 equiv) and allyl bromide (0.181 g, 1.5 mmol, 1.5 equiv), 9d was isolated as a slight yellow oil (0.280 g, 77%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.23$ (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.26 (s, 3H, CH₃), 2.73-2.78 (m, 4H, 2CH₂), 3.54 (m, J=1.9 Hz, 2H, CH₂=CHCH₂Ar), 4.29 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.46 (m, J=2.5, 1.5 Hz, 2H, CH₂=CHCH₂O), 4.91–5.09 (m, J=22.3, 17.2, 8.5, 1.7 Hz, 2H, CH₂=CHCH₂Ar), 5.21-5.44 (m, J=15.5, 8.8, 1.7 Hz, 2H, CH₂=CHCH₂O), 6.05 (m, 2H, CH₂=CHCH₂Ar, CH₂=CHCH₂O), 7.18-7.23 (m, 3H, Ar), 7.55 (s, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 13.9, 16.0 (CH_3), 25.8, 29.1, 31.0, 61.4, 76.3, 115.6,$ 116.7 (CH₂), 124.6 (C), 126.1, 126.4, 127.37, 127.40 (CH), 130.9, 131.7, 133.7, 133.9 (C), 134.3 (CH), 136.2 (C), 137.2 (CH), 138.5, 153.4, 169.6 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2979 (w), 2933 (w), 1725 (s), 1641 (w), 1408 (w), 1285 (w), 1189 (m), 1022 (w), 918 (w), 764 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=210.7 (4.49), 268.7 (4.15), 295.3 (3.78), 303.8 (3.78). MS (EI, 70 eV): m/z (%)=363 (M⁺+1, 1), 362 (M⁺, 7), 275 (11), 248 (7), 215 (7), 32 (22), 28 (100). HRMS (EI, 70 eV) calcd for C₂₄H₂₆O₃ $([M^+]): m/z = 362.18729; found: m/z = 362.18764.$

3.3.7. Ethyl 3-(but-3-enyl)-2-(allyloxy)-4,5,6-trimethylbenzoate (9e). Starting with **8e** (0.325 g, 1.31 mmol, 1.0 equiv) in 20 mL of THF, NaH (0.063 g, 2.62 mmol, 2.0 equiv), *n*-Bu₄NI (0.855 g, 2.62 mmol, 2.0 equiv) and allyl bromide (0.235 g, 1.95 mmol, 1.5 equiv), **9e** was isolated as a slight yellow oil (0.300 g, 76%). ¹H NMR (CDCl₃, 300 MHz): δ =1.37 (t, *J*=7.1 Hz, 3H, OCH₂CH₃), 2.16 (s, 3H, CH₃), 2.17–2.26 (m, 2H, CH₂=CHCH₂CH₂), 2.22 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.74 (m *J*=6.0, 1.5 Hz, 2H, CH₂=CHCH₂CH₂D), 4.97–5.10 (m, *J*=10.1, 17.1, 1.5 Hz, 2H, CH₂=CHCH₂CH₂), 5.19–5.43 (m, *J*=10.5, 15.5, 1.7 Hz, 2H, CH_2 =CHCH₂O), 5.86–5.99 (m, J=5.9 Hz, 1H, CH₂=CHCH₂CH₂CH₂), 6.00–6.06 (m, J=5.2 Hz, 1H, CH₂=CHCH₂O). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2, 15.9, 16.4, 17.2 (CH₃), 26.5, 34.2, 61.1, 76.0, 114.5, 116.7 (CH₂), 127.5, 131.1, 131.4, 131.8 (C), 133.9 (CH), 137.5 (C), 138.3 (CH), 151.5, 169.3 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2981 (m), 2932 (m), 1727 (s), 1449 (m), 1423 (m), 1279 (s), 1189 (s), 1046 (m). UV–vis (CH₃CN, nm): λ_{max} (log ε)=203.1 (4.50), 279.9 (2.79). MS (EI, 70 eV): m/z (%)=303 (M⁺+1, 5), 302 (M⁺, 48), 261 (38), 215 (100), 189 (17), 175 (47), 146.5 (16), 91 (30), 41 (52), 28 (49). HRMS (ESI⁺) calcd for C₁₉H₂₆O₃ [M⁺+1]: m/z= 303.19602; found: m/z=303.19603. Anal. Calcd for C₁₉H₂₆O₃: C 75.46, H 8.67; found: C 75.80, H 8.46.

3.3.8. Ethyl 2-(allyloxy)-3-(but-3-enyl)-4,6-diethylbenzoate (9f). Starting with 8f (0.350 g, 1.28 mmol, 1.0 equiv) in 20 mL of THF, NaH (0.061 g, 2.56 mmol, 2.0 equiv), n-Bu₄NI (0.836 g, 2.56 mmol, 2.0 equiv) and allyl bromide (0.230 g, 1.91 mmol, 1.5 equiv), **9f** was isolated as a colour-less oil (0.330 g, 82%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.23$ (t, J = 7.1 Hz, 6H, 2CH₃CH₂), 1.37 (t, J = 7.1 Hz, 3H, OCH₂CH₃), 2.26 (m, 2H, CH₂=CHCH₂CH₂), 2.54-2.61 (q, J=7.5 Hz, 4H, 2CH₃CH₂), 2.69 (m, 2H, $CH_2 = CHCH_2CH_2$, 4.35 (q, J = 7.1 Hz, 2H, OCH_2CH_3), 4.42 (m, J=1.5 Hz, 2H, CH₂=CHCH₂O), 4.96–5.20 (m, J=9.3, 15.3, 1.5 Hz, 2H, CH₂=CHCH₂CH₂), 5.24–5.44 (m, J=8.9, 15.5, 1.5 Hz, 2H, CH₂=CHCH₂O), 5.89-6.02 (m, 2H, CH₂=CHCH₂CH₂, CH₂=CHCH₂O), 6.84 (s, 1H, CH, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =14.2, 15.5 (2CH₃), 25.8 (2CH₂), 26.3, 34.7, 61.1, 75.7, 114.5, 116.6 (CH₂), 124.5 (CH), 126.2, 130.8 (C), 133.9, 138.5 (CH), 139.9, 145.3, 154.3, 168.8 (C). UV-vis (CH₃CN, nm): λ_{max} (log ε)=203.5 (4.61), 278.5 (3.06). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2972 (m), 2935 (w), 1727 (s), 1458 (w), 1414 (w), 1282 (m), 1149 (m), 917 (m). MS (EI, 70 eV): m/z (%)=316 (M⁺, 28), 275 (69), 229 (100), 189 (45), 105 (14), 91 (28), 70 (55), 41 (95), 28 (88). HRMS (ESI+) calcd for $C_{20}H_{28}O_3$ [M⁺+1]: m/z=317.21167; found: m/7=317.21222. Anal. Calcd for C₂₀H₂₈O₃: C 75.91, H 8.92; found: C 75.72, H 8.72.

3.3.9. Ethyl 3-(allyloxy)-2-(but-3-enyl)-9,10-dihydro-1methylphenanthrene-4-carboxylate (9g). Starting with 8g (0.336 g, 1.00 mmol, 1.0 equiv) in 15 mL of THF, NaH $(0.048 \text{ g}, 2.00 \text{ mmol}, 2.0 \text{ equiv}), n-Bu_4\text{NI}$ (0.653 g. 2.00 mmol, 2.0 equiv) and allyl bromide (0.181 g, 1.50 mmol, 1.5 equiv), **9g** was isolated as a colourless oil (0.362 g, 96 $\hat{\%}$). ¹H NMR (CDCl₃, 300 MHz): $\delta =$ 1.24 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.27 (m, 2H, CH₂=CHCH₂CH₂), 2.31 (s, 3H, CH₃), 2.70–2.83 (m, 6H, OCH_2CH_3 , 4.48 (m, 2H, CH_2 =CHC H_2O), 4.99–5.08 (m, J=10.2, 15.4, 1.5 Hz, 2H, CH₂=CHCH₂CH₂), 5.39-5.47 (m, J=10.5, 15.5, 1.6 Hz, 2H, CH₂=CHCH₂O), 5.87–5.98 (m, J=6.5 Hz, 1H, CH₂=CHCH₂CH₂), 6.01-6.13 (m, J=5.3 Hz, 1H, CH₂=CHCH₂O), 7.17-7.51 (m, 3H, Ar), 7.52 (m, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =13.9, 15.9 (CH₃), 25.9, 26.8, 29.1, 34.1, 61.4, 76.3, 114.7, 116.8 (CH₂), 124.6 (C), 126.1, 126.4, 127.32, 127.33 (CH), 131.4, 133.6, 133.7 (C), 133.9 (CH), 134.4, 136.3 (C), 138.2 (CH), 138.4, 153.3, 169.7 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3075 (m), 2978 (s), 2900 (s), 1724 (s), 1643 (m), 1557

(m), 1444 (m), 1409 (m), 1286 (m), 1187 (m), 1109 (m), 1024 (m), 989 (m), 916 (m), 760 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)=210.1 (4.57), 268.2 (4.25), 304.8 (3.88). MS (EI, 70 eV): m/z (%)=377 (M⁺+1, 26), 376 (M⁺, 100), 335 (92), 307 (32), 249 (53), 221 (27), 178 (39), 85 (25), 57 (26), 41 (62), 28 (80). HRMS (ESI⁺) calcd for C₂₅H₂₈O₃ [M⁺+1]: m/z=377.21167; found: m/z=377.21185.

3.4. General procedure for the synthesis of products 5a,b and 10a–g

To a CH_2Cl_2 solution of **4a,b** or **9a–g** was added a CH_2Cl_2 solution of catalyst **6** under argon atmosphere. After stirring for 6–8 h at 20 °C under argon atmosphere, the solution was exposed to air and concentrated in vacuo. The residue was purified by column chromatography (silica gel, *n*-hexane/EtOAc=25:1). The product should be stored at ca. 0 °C or below.

3.4.1. Ethyl 2,5-dihydrobenzo[b]oxepin-9-carboxylate (5a). Starting with 4a (0.123 g, 0.5 mmol) in 10 mL of CH₂Cl₂ and 6 (0.021 g, 0.025 mmol), 5a was isolated as a colourless oil (0.108 g, 99%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.39$ (t, J = 7.2 Hz, 3H, OCH₂CH₃), 3.48 (m, J=3.0 Hz, 2H, CH₂), 4.38 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.69–4.72 (m, J=2.4 Hz, 2H, CH₂), 5.44–5.48 (m, 1H, CH), 5.81–5.88 (m, 1H, CH), 7.03–7.08 (dt, J=7.8, 1.8 Hz, 1H, Ar), 7.23-7.27 (m, 1H, Ar), 7.62-7.68 (ddd, J=6.9, 6.9, 1.8 Hz, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): $\delta = 14.1$ (CH₃), 31.2, 60.8, 70.9 (CH₂), 118.1 (C), 123.5 (CH), 125.2 (C), 127.4, 128.9, 129.9, 132.0 (CH), 156.3 (C), 165.8 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2932 (m), 1723 (s), 1465 (m), 1290 (s), 1216 (m), 1170 (w), 1137 (s), 1085 (m), 1056 (w), 1023 (w), 989 (w), 761 (w). MS (EI, 70 eV): m/z (%)=218 (M⁺, 64), 189 (15), 173 (100), 145 (42), 91 (28), 75 (15). HRMS (EI, 70 eV) calcd for $C_{13}H_{14}O_3$ ([M⁺]): m/z=218.09429; found: m/z=218.09471.

3.4.2. Ethyl 5,6-dihydro-2H-benzo[b]oxocine-10-carboxylate (5b). Starting with 4b (0.130 g, 0.5 mmol) in 10 mL of CH₂Cl₂ and **6** (0.021 g, 0.025 mmol), **5b** was isolated as a colourless oil (0.087 g, 75%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.37$ (t, J = 7.2 Hz, 3H, OCH₂CH₃), 2.68 (m, 2H, CH₂), 2.93 (m, J=6.2 Hz, 2H, CH₂), 4.38 (q, J=7.2 Hz, 2H, OCH₂CH₃), 4.70 (m, 2H, CH₂), 5.35–5.41 (m, J=3.0, 1.2 Hz, 1H, CH), 5.71–5.78 (m, J=3.0, 1.5 Hz, 1H, CH), 7.05 (dt, J=7.8, 1.8 Hz, 1H, Ar), 7.23–7.27 (m, 1H, Ar), 7.65 (ddd, J=6.9, 6.9, 1.8 Hz, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =14.3 (CH₃), 28.0, 30.2, 61.2, 73.3 (CH₂), 118.2 (C), 123.5 (CH), 125.2 (C), 127.3, 129.1, 131.8, 133.9 (CH), 157.1 (C), 166.3 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2982 (m), 2932 (m), 1725 (s), 1668 (w), 1452 (m), 1285 (s), 1216 (m), 1186 (m), 1142 (w), 1075 (m), 1023 (m), 763 (w). MS (EI, 70 eV): m/z (%)=232 (M⁺, 52), 203 (5), 187 (100), 159 (42), 91 (35), 75 (12). HRMS (EI, 70 eV) calcd for $C_{14}H_{16}O_3$ ([M⁺]): m/z=232.10994; found: *m/z*=232.11039.

3.4.3. Ethyl 8,6-dimethyl-2,5-dihydrobenzo[*b*]**oxepin-9-carboxylate** (**10a**). Starting with **9a** (0.260 g, 0.95 mmol, 1.0 equiv) in 18 mL of CH₂Cl₂ and **6** (0.039 g, 0.047 mmol, 5 mol %, dissolved in 2 mL of CH₂Cl₂), **10a** was isolated as a colourless oil (0.210 g, 99%). ¹H NMR

(CDCl₃, 300 MHz): δ=1.38 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.26 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 3.44 (m, J=1.9 Hz, 2H, CH₂), 4.39 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.63 (m, J=1.5 Hz, 2H, CH₂), 5.46 (m, J=5.2, 1.4 Hz, 1H, CH), 5.83 (m, 1H, CH), 6.76 (s, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =14.3, 18.9, 19.8 (CH₃), 25.7, 60.9, 71.4 (CH₂), 124.9 (CH), 126.1 (C), 127.5, 127.8 (CH), 133.5 (2C), 136.6, 152.2, 168.1 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3438 (w), 2979 (s), 2930 (s), 1726 (s), 1609 (s), 1456 (s), 1387 (m), 1293 (s), 1270 (s), 1223 (m), 1149 (s), 1091 (s), 1046 (s), 862 (m), 653 (w). UV-vis (CH₃CN, nm): λ_{max} $(\log \varepsilon) = 205.8$ (4.25), 263.1 (3.62), 301.8 (3.27). MS (EI, 70 eV): m/z (%)=247 (M⁺+1, 9), 246 (M⁺, 77), 201 (92), 200 (100), 199 (47), 183 (35), 173 (23), 172 (63), 171 (24), 157 (53), 129 (41), 128 (31), 114 (21), 45 (18), 31 (41). Anal. Calcd for C₁₅H₁₈O₃: C 73.15, H 7.36; found: C 73.03, H 6.96.

3.4.4. Ethyl 6,7,8-trimethyl-2,5-dihydrobenzo[b]oxepin-9-carboxylate (10b). Starting with 9b (0.140 g, 0.50 mmol, 1.0 equiv) in 10 mL of CH_2Cl_2 and **6** (0.021 mg, 0.025 mmol, 5 mol %, dissolved in 1 mL of CH₂Cl₂), 10b was isolated as a colourless oil (0.121 g, 93%). ¹H NMR (CDCl₃, 300 MHz): δ =1.38 (t, J=7.2 Hz, 3H, OCH₂CH₃), 2.17 (s, 3H, CH₃), 2.20 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 3.51 (m, J=1.8 Hz, 2H, CH₂), 4.40 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.61 (m, J=2.4 Hz, 2H, CH₂), 5.42 (m, J=6.1, 1.2 Hz, 1H, CH), 5.82–5.89 (m, J=2.3 Hz, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =14.3, 16.2, 16.3, 17.3 (CH₃), 26.0, 61.0, 71.6 (CH₂), 125.3 (CH), 126.7 (C), 127.8 (CH), 131.1, 131.4, 133.9, 134.8, 152.2, 168.9 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3451 (br, m), 2982 (s), 2932 (s), 1730 (s), 1673 (s), 1587 (s), 1453 (s), 1386 (m), 1309 (s), 1278 (s), 1189 (s), 1101 (s), 1043 (s), 735 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)=205.6 (4.25), 301.6 (3.43). MS (EI, 70 eV): m/z (%)=261 (M⁺+1, 10), 260 (M⁺, 81), 215 (45), 214 (40), 186 (41), 171 (55), 143 (22), 129 (13), 128 (20), 45 (16), 32 (20), 31 (31), 28 (100). HRMS (ESI⁺) calcd for $C_{16}H_{20}O_3$ [M⁺+1]: *m*/*z*=261.14907; found: *m*/*z*=261.14879.

3.4.5. Ethyl 6,8-diethyl-2,5-dihydrobenzo[b]oxepin-9carboxylate (10c). Starting with 9c (0.120 g, 0.397 mmol, 1.0 equiv) in 5 mL of CH₂Cl₂ and 6 (0.014 g, 0.017 mmol, 5 mol %, dissolved in 0.5 mL of CH₂Cl₂), 10c was isolated as a colourless oil (0.099 g, 91%). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.18$ (t, J = 7.4 Hz, 3H, CH_3CH_2), 1.23 (t, J=7.5 Hz, 3H, CH₃CH₂), 1.38 (t, J=7.1 Hz, 3H, OCH_2CH_3), 2.63 (m, J=7.4 Hz, 4H, 2CH₃CH₂), 3.44 (m, J=2.0 Hz, 2H, CH₂), 4.38 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.63 (m, J=2.3 Hz, 2H, CH₂), 5.46 (m, J=7.3, 1.4 Hz, 1H, CH), 5.85 (m, J=5.7 Hz, 1H, CH), 6.79 (s, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =14.3, 15.2, 15.6 (CH₃), 25.5 (CH₂), 26.3, 26.9 (CH₃), 61.3, 71.5 (CH₂), 124.7, 125.1, 127.9 (CH), 128.5, 133.2, 139.9, 142.9, 153.7, 168.7 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2981 (m), 2930 (m), 1655 (s), 1600 (m), 1446 (m), 1403 (s), 1312 (s), 1260 (s), 1195 (s), 1116 (w), 1045 (m), 910 (w), 806 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=204.4 (4.41), 299.8 (3.43). MS (EI, 70 eV): m/z (%)=274 (M⁺, 12), 259 (3), 229 (4), 213 (7), 186 (7), 171 (9), 128 (6), 32 (22), 28 (100).

3.4.6. Ethyl 5,6,8,11-tetrahydro-7-methylphenanthro[3,2-b]oxepin-13-carboxylate (10d). Starting with 9d (0.250 g, 0.688 mmol, 1.0 equiv) in 12 mL of CH₂Cl₂ and 6 (0.028 g, 0.034 mmol, 5 mol %, dissolved in 1 mL of CH₂Cl₂), **10d** was isolated as a colourless oil (0.185 g, 80%). ¹H NMR (CDCl₃, 300 MHz): δ =1.27 (t, J=7.2 Hz, 3H, OCH₂CH₃), 2.31 (s, 3H, CH₃), 2.72–2.80 (m, J=4.1, 2.5 Hz, 4H, C₆H₄(CH₂)₂), 3.58 (m, J=2.1 Hz, 2H, CH₂), 4.34 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.70 (m, J=2.3 Hz, 2H, CH₂), 5.49 (m, J=11.3 Hz, 1H, CH), 5.90 (m, 1H, CH), 7.18–7.24 (m, 3H, Ar), 7.53 (s, 1H, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ=14.1, 15.9 (CH₃), 26.0, 26.2, 29.2, 61.3, 71.9 (CH₂), 123.8 (C), 125.0, 126.0 (CH), 126.2, 126.4 (C), 126.5, 127.3, 127.9, 128.0 (CH), 131.1, 133.5, 133.7, 138.3, 153.8, 169.3 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2977 (w), 2935 (w), 1722 (s), 1446 (w), 1280 (m), 1194 (s), 1071 (w), 1026 (w). UV-vis (CH₃CN, nm): λ_{max} $(\log \varepsilon) = 209.4$ (4.48), 269.2 (4.16), 303.2 (3.90). MS (EI, 70 eV): m/z (%)=335 (M⁺+1, 23), 334 (M⁺, 100), 320 (18), 319 (37), 289 (27), 260 (34), 245 (24), 202 (22), 29 (32). HRMS (ESI⁺) calcd for $C_{22}H_{22}O_3$ [M⁺+1]: m/z=335.16472; found: *m*/*z*=335.16511.

3.4.7. Ethyl 7,8,9-trimethyl-5,6-dihydro-2H-benzo[b]oxocine-10-carboxylate (10e). Starting with 9e (0.243 g, 0.804 mmol, 1.0 equiv) in 16 mL of CH_2Cl_2 and **6** (0.035 g, 0.040 mmol, 5 mol %, dissolved in 1 mL of CH₂Cl₂), **10e** was isolated as a colourless oil (0.166 g, 76%). ¹H NMR (CDCl₃, 300 MHz): δ =1.37 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.13 (s, 3H, CH₃), 2.18 (s, 3H, CH₃), 2.24 (s, 3H, CH₃), 2.68 (m, J=5.5, 1.2 Hz, 2H, CH₂), 2.94 (m, J=6.2 Hz, 2H, CH₂), 4.38 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.71 (m, J=1.3 Hz, 2H, CH_2), 5.33–5.39 (m, J=3.0, 1.3 Hz, 1H, CH), 5.69–5.76 (m, J=3.0, 1.5 Hz, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =14.3, 16.0, 16.1, 17.3 (CH₃), 28.0, 28.2, 61.1, 73.2 (CH₂), 125.2 (CH), 127.5, 130.4, 131.2, 131.4 (C), 131.6 (CH), 136.9, 150.8, 169.5 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2981 (m), 2932 (m), 1727 (s), 1449 (m), 1423 (m), 1279 (s), 1189 (s), 1046 (m), 98 (m). UV-vis (CH₃CN, nm): λ_{max} (log ε)=203.1 (4.50), 279.9 (2.79). MS (EI, 70 eV): m/z (%)=275 (M⁺+1, 15), 274 (M⁺, 100), 229 (39), 187 (53), 175 (31), 146.5 (28), 91 (31), 28 (47). HRMS (ESI⁺) calcd for C₁₇H₂₂O₃ [M⁺+1]: *m*/*z*=275.16472; found: *m*/*z*=275.16444.

3.4.8. Ethyl 7,9-diethyl-5,6-dihydro-2H-benzo[b]oxocine-10-carboxylate (10f). Starting with 9f (0.265 g, 0.837 mmol, 1.0 equiv) in 16 mL of CH₂Cl₂ and **6** (0.035 g, 0.042 mmol, 5 mol %, dissolved in 1 mL of CH₂Cl₂), **10f** was isolated as a colourless oil (0.220 g, 91%). ¹H NMR (CDCl₃, 300 MHz): δ=1.20 (t, J=7.5 Hz, 6H, 2CH₃CH₂), 1.37 (t, J=7.1 Hz, 3H, OCH₂CH₃), 2.56 (q, J=7.5 Hz, 4H, 2CH₃CH₂), 2.68 (m, J=7.0, 1.2 Hz, 2H, CH₂), 2.92 (m, J=6.3, 2.3 Hz, 2H, CH₂), 4.38 (q, J=7.1 Hz, 2H, OCH₂CH₃), 4.70 (m, J=1.4 Hz, 2H, CH₂), 5.37–5.43 (m, J=3.0, 1.2 Hz, 1H, CH), 5.73–5.77 (m, J=1.6 Hz, 1H, CH), 6.82 (s, 1H, CH, Ar). ¹³C NMR (CDCl₃, 75 MHz): δ =14.3, 14.9, 15.5 (CH₃), 26.2, 26.2, 27.0, 27.8, 60.9, 73.1 (CH₂), 124.3, 125.5 (CH), 126.6, 129.9 (C), 131.9 (CH), 139.7, 144.8, 153.6, 168.9 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2968 (s), 2935 (s), 2875 (m), 1726 (s), 1606 (m), 1562 (m), 1454 (m), 1415 (m), 1282 (s), 1245 (s), 1148 (s), 1100 (s), 1072 (s), 877 (w), 707 (w). UV-vis (CH₃CN, nm): λ_{max} (log ε)=203.7 (2.44), 277.5 (3.07). MS (EI, 70 eV): m/z (%)=288 (M⁺, 4), 234 (18), 188 (18), 163 (5), 91 (6), 32 (24), 28 (100).

HRMS (ESI⁺) calcd for $C_{18}H_{24}O_3$ [M⁺+1]: m/z= 289.18037; found: m/z=289.18049.

3.4.9. Ethyl 6,8,9,12-tetrahydro-7-methyl-5H-phenanthro[3,2-b]oxocine-14-carboxylate (10g). Starting with **9g** (0.300 g, 0.797 mmol, 1.0 equiv) in 19 mL of CH₂Cl₂ and 6 (0.033 g, 0.0398 mmol, 5 mol %, dissolved in 1 mL of CH₂Cl₂), **10g** was isolated as a colourless oil (0.180 g, 65%). ¹H NMR (CDCl₃, 300 MHz): δ =1.23 (t, J=7.2 Hz, 3H, OCH₂CH₃), 2.24 (s, 3H, CH₃), 2.26 (m, 2H, CH₂), 2.67–2.78 (m, 4H, $C_6H_4(CH_2)_2$), 3.00 (m, J=1.3 Hz, 2H, CH₂), 4.30 (q, J=7.1 Hz, 2H, OCH₂CH₃), 5.41 (m, J=6.2, 1.3 Hz, 1H, CH), 5.75 (m, J=5.7, 1.7 Hz, 1H, CH), 7.17-7.25 (m, 3H, Ar), 7.54 (s, 1H, CH). ¹³C NMR (CDCl₃, 75 MHz): δ =13.9, 15.7 (CH₃), 26.0, 28.10, 28.14, 29.2, 61.3, 73.7 (CH₂), 124.4 (C), 125.4, 126.1, 126.4, 127.25, 127.29, 131.2 (CH), 131.6, 132.8, 133.85, 133.98, 135.7, 138.4, 152.7 (C), 169.8 (CO). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3432 (br, m), 2978 (w), 2890 (w), 1723 (s), 1450 (w), 1283 (m), 1188 (s), 1159 (w), 1023 (m). UV–vis (CH₃CN, nm): λ_{max} $(\log \varepsilon)=209.3$ (4.50), 268.2 (4.18), 304.9 (3.84). MS (EI, 70 eV): m/z (%)=348 (M⁺, 2), 125 (1), 40 (3), 32 (29), 28 (100). HRMS (ESI⁺) calcd for $C_{25}H_{28}O_3$ ([M⁺+1]): m/z=349.18037; found: *m*/*z*=349.18032.

Acknowledgements

Financial support by the state of Vietnam (MOET scholarship for V.T.H.N.) and by the DAAD (scholarship for E.B.) is gratefully acknowledged.

References and notes

- Macias, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org. Chem. 1994, 59, 8261.
- Dinda, B.; Das, S. K.; Hajra, A. K.; Bhattacharya, A.; De, K.; Chel, G.; Achari, B. *Indian J. Chem., Sect. B* 1999, 38, 577.
- (a) Macias, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Fronczek, F. R. *Tetrahedron Lett.* **1993**, *34*, 1999; (b) Takabatake, K.; Nishi, I.; Shindo, M.; Shishido, K. *J. Chem. Soc., Perkin Trans. 1* **2000**, 1807; (c) Macias, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. *J. Nat. Prod.* **1999**, *62*, 1636.
- 4. Crews, P.; Harrison, B. J. Org. Chem. 1997, 62, 2646.
- (a) Nagai, M.; Nagumo, S. *Chem. Pharm. Bull.* **1987**, *35*, 3002;
 (b) Oh, S. R.; Kim, D. S.; Lee, I. S.; Jung, K. Y.; Lee, J. J.; Lee, H.-K. *Planta Med.* **1998**, *64*, 456.
- (a) Asakawa, Y.; Toyota, M.; Takemoto, T. *Phytochemistry* 1978, 17, 2005; (b) Asakawa, Y.; Takeda, R.; Toyota, M.; Tsunematsu, T. *Phytochemistry* 1981, 20, 858; (c) Asakawa, Y.; Hashimoto, T.; Takikawa, K.; Tori, M.; Ogawa, S. *Phytochemistry* 1991, 30, 235; (d) Yamaguchi, S.; Furihata, K.; Miyazawa, M.; Yokoyama, H.; Hirai, Y. *Tetrahedron Lett.* 2000, 41, 4787; (e) Breuer, M.; Leeder, G.; Proksch, P.; Budzikiewicz, H. *Phytochemistry* 1986, 25, 495; (f) McCormick, S.; Robson, K.; Bohm, B. *Phytochemistry* 1986, 25, 1723.
- (a) Nohara, T.; Kinjo, J.; Furusawa, J.; Sakai, Y.; Inoue, M. *Phytochemistry* **1993**, *33*, 1207; (b) Shirataki, Y.; Tagaya, Y.; Yokoe, I.; Komatsu, M. *Chem. Pharm. Bull.* **1987**, *35*, 1637.
- For the synthesis of 2,5-dihydrobenzo[b]oxepins and 5,6-dihydro-2H-benzo[b]oxocines based on a 'DoM-RCM' strategy, see: (a) Stefinovic, M.; Snieckus, V. J. Org. Chem. 1998, 63,

2808; (b) Fürstner, A.; Ackermann, L. *Chem. Commun.* **1999**, 95; see also: (c) Visser, M. S.; Heron, N. M.; Didiuk, M. T.; Sagal, J. F.; Hoveyda, A. H. *J. Am. Chem. Soc.* **1996**, *118*, 4291.

- For the synthesis of heliannuol D, see: (a) Sabui, S. K.; Venkateswaran, R. V. *Tetrahedron Lett.* 2004, 45, 2047; for (-)-heliannuol C, see: (b) Kamei, T.; Shindo, M.; Shishido, K. *Tetrahedron Lett.* 2003, 44, 8505; for (-)-heliannuol A, see: (c) Kishuku, H.; Shindo, M.; Shishido, K. *Chem. Commun.* 2003, 350; for pterulones, see: (d) Kahnberg, P.; Lee, C. W.; Grubbs, R. H.; Sterner, O. *Tetrahedron* 2002, 58, 5203; for the synthesis of pterulones, see: (e) Gruijters, B. W. T.; van Veldhuizen, A.; Weijers, C. A. G. M.; Wijnberg, J. B. P. A. J. Nat. Prod. 2002, 65, 558.
- 10. Nguyen, V. T. H.; Bellur, E.; Langer, P. *Tetrahedron Lett.* **2006**, *47*, 113.
- 11. For a review on the synthesis of carbacycles by formal [3+3] cyclizations of 1,3-bis(silyl enol ethers), see: Feist, H.; Langer, P. *Synthesis* **2007**, 327.
- 12. For a review on 1,3-bis(silyl enol ethers), see: Langer, P. *Synthesis* **2002**, 441.

- (a) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534; (b) Brownbridge, P.; Chan, T.-H.; Brook, M. A.; Kang, G. J. Can. J. Chem. 1983, 61, 688; (c) Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. 1993, 115, 830.
- 14. Langer, P.; Eckardt, T.; Saleh, N. N. R.; Karimé, I.; Müller, P. *Eur. J. Org. Chem.* **2001**, 3657.
- For reviews, see: (a) Schuster, M.; Blechert, S. Angew. Chem. 1997, 109, 2124; Angew. Chem., Int. Ed. 1997, 36, 2036; (b) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371; (c) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413.
- For the synthesis of medium-sized rings by RCM, see: (a) Maier, M. E. Angew. Chem. 2000, 112, 2153; Angew. Chem. Int. Ed. 2000, 39, 2073; (b) Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653; (c) Miller, S. J.; Kim, S.-H.; Chen, Z.-R.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 2108.
- For the synthesis of enol ethers by RCM and subsequent isomerization, see: Sutton, A. E.; Seigal, B. A.; Finnegan, D. F.; Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 13390.